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Abstract

Mac Lane’s strictification theorem states that every (weak) monoidal category is equivalent
to a strict one. This fact extends to 2-categories, but fails in higher dimension: not every 3-
category is equivalent to a strict one. In this context, Gray categories provide a compromise:
sufficiently strict to be manageable, while remaining sufficiently general to capture every weak
3-category. In this short note, we discuss strictification in category theory, how it relates to
coherence and when it fails, and finally informally introduce Gray categories.

In category theory, a categorical structure most often comes equipped with some sort of struc-
tural morphisms witnessing its properties; for instance, a monoidal structure on a category comes
equipped with an associator and unitors, witnessing the associativity and unitality of the monoidal
structure. In general, we say that the structure is strict if all structural morphisms are identities; in
constrast, the generic case is sometimes called weak. If every weak structure is suitably equivalent
to a strict one, we say that the structure can be strictified. This is the case for monoidal categories:

Theorem (Mac Lane’s strictification theorem). Every (weak) monoidal category is monoidally equiv-
alent to a strict monoidal category.

This result extends to 2-categories: every (weak) 2-category (or bicategory) is 2-equivalent to
a strict 2-category. However, this stops to hold for 3-categories: there exist (weak) 3-categories (or
tricategories) that are not 3-equivalent to strict 3-categories.

Whenever the strictification theorem doesn’t hold, one can still look for weaker versions where
one only strictifies some of the structural morphisms. A categorical structure where some of the
structural morphisms are strict is called semi-strict. Note that in general, there are multiple notions
of being semi-strict for a given structure. The goal is then to find a semi-strict structure that
preserve expressiveness (every weak structure is suitably equivalent to a semi-strict one), while
achieving effectiveness (sufficiently strict to be manageable in practice).

For 3-categories, one such semi-strict compromise is given by the notion of Gray categories.
The companion strictification theorem was shown by Gordon, Power and Street in 1995 [3]:!

Theorem (strictification theorem for Gray categories). Every (weak) 3-category is 3-equivalent to
a Gray category.

This note starts in §1 with explaining the close connection between strictification and coher-
ence, illustrated in the context of monoidal category. We then introduce the notion of braided
monoidal categories in §2, one of the simplest cases where full strictification cannot be achieved.
Finally, §3 informally introduces Gray categories, emphasizing the analogy with braided monoidal
categories.”

!See also the detailed account of Gurski [4].
These slides and the paper [9] gave some inspirations for this note, although we cannot pinpoint a specific spot in
the text.


https://conferences.inf.ed.ac.uk/ct2019/slides/34.pdf

§1 Strictification and coherence in monoidal categories

Recall the definition of a monoidal category:

Definition ([1, Definition 6.1.1], nLab). A monoidal category is a category K which admits a func-
tor ®: K x K — K, called tensor product, such that:

(i) There exists a natural isomorphism oy »: (£ ® y) ® 2 = = @ (y ® 2) called the associator,
satisfying the following naturality condition:
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(ii) There exists an object I € IC, called the unit, such that there exists a natural isomorphism
Mgt I®x — zand p,: x®1 — x called unitors, satisfying the following naturality condition:
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A monoidal functor is a functor F: (K, ®x, Ix) — (L£,Rr,Iz) between monoidal categories, to-
gether with a natural isomorphism pi, : F(x) ®p F(y) = F(x ® y) satisfying some naturality
conditions (see e.g. the nLab).

Mac Lane’s coherence theorem (nLab) for monoidal categories informally states that the natu-
rality conditions are enough to ensure that “every diagram made of a, A and p in K commutes”.
Formulated in this way, the statement is not technically correct; indeed, one can construct an ex-
ample where for some object =, we have (r ® ) ® ¢ =  ® (2 ® x) while the associator o 4 »
is non-trivial.®> The correct statement is only concerned with diagrams that “respect the choice of
bracketing”, which are called formal diagrams:

(i) Mac Lane’s coherence theorem (first version): In a monoidal category (KC; o, A, p), every formal
diagram made of {a™!, A*! p*1} commutes.

Another way to understand formal diagrams is to say that they are exactly “the diagrams made of
a, A and p that make sense in any monoidal category”. To formalize that point, denote by Brack
the free monoidal category generated by one element (—). The objects of Brack are all the ways
of bracketing a tuple, with abritrary units / thrown in. For instance,

He((=-)e=)I)

*This is Isbell’s example, mentioned here and also in [2, remark 2.8.7]. This is closely related to the fact that while a
monoidal category is monoidally equivalent to a skeletal monoidal category, it is not in general equivalent to a skeletal
strict monoidal category. See also [5, prop. 1.35].



https://ncatlab.org/nlab/show/monoidal+category#strict_monoidal_categories
https://ncatlab.org/nlab/show/monoidal+functor
https://ncatlab.org/nlab/show/coherence+theorem+for+monoidal+categories
https://ncatlab.org/nlab/show/Mac+Lane's+proof+of+the+coherence+theorem+for+monoidal+categories

is an object of Brack. Morphisms are formal compositions of {a™! A*!, p*1}, affecting the

bracketing in the obvious way. This category decomposes into connected components Brack(n),
depending on the length n of the tuple (in the above example, the tuple is of length three). If
F: Brack — K is a monoidal functor, then the image F (D) of a diagram D C Brack is a formal
diagram, and every formal diagram arises in this way. Mac Lane’s coherence theorem can then be
reformulated as follows:

(ii) Mac Lane’s coherence theorem (second version): The connected components Brack(n) are
contractible groupoids.

In other words, there is exactly one morphism between each pair of objects in Brack(n); equiv-
alently, the underlying graph is a complete graph (discarding identities). This point of view leads
the way to yet another version of Mac Lane’s coherence theorem, namely Mac Lane’s strictification
theorem, already mentioned in the introduction:

(iii) Mac Lane’s coherence theorem (third version), or Mac Lane’s strictification theorem: Every
(weak) monoidal category is monoidally equivalent to a strict monoidal category.

In general, coherence and strictification are always two sides of the same coin. To illustrate that
fact in the context of monoidal categories, we show that (iii) follows from (ii).* °

Proof that (ii) = (iii). Let (K, ®x, Ix) be a monoidal category. How should its strictification A"
be defined? On objects, it follows the naive idea that, if associativity were strict in K, we could
juxtapose objects without worrying about brackets:

« objects in K% are tuples T = (1,2, ..., x,) of objects in K. The monoidal structure on
objects is given by concatenation.

To define morphisms, we think of & as representing all the possible bracketings of z1, 22 and x,.
More precisely, each such tuple defines a functor

evg: Brack(n) — K
which “evaluates” a bracketing on 7. For instance:
evy: (5)@(m)@ (=) @) = a1 @ ((z2 @ 23) © [i)-

It follows from (ii) that evz is a clique, that is, a functor whose domain is a contractible monoid.
Cliques formalize the notion of contractible sub-categories in a given category.

If F: G — Kand F': ¢’ — K are two cliques, a cliqgue morphism betwen F and F' is a
family of morphism F(g) — F(g’) for objects (g,¢’) € G x G', such that all relevant triangles
commute. This family is in fact uniquely determined by a single morphism F(g) — F(¢'); this is
a consequence of the contractibility of G and G’. Here is a schematic:

9,9’

“The direction (iii) = (i) is relatively clear: this essentially follows from the fact that formal diagrams commute in
strict monoidal categories.
>This proof is sketched in this nLab article.



https://ncatlab.org/nlab/show/clique#monoidal_strictifications

We can now conclude the definition of /C5:

« morphisms in K5 between tuples T and ¥ are the clique morphisms between evz and evy.
The monoidal structure in induced from ®.

More precisely, if f: Brack(z) — Brack(y) and f’: Brack(z') — Brack(y') are morphisms
between bracketings representing clique morphisms [f] and [f'], then [f]® [f'] := [f ® f’]. Given
that cliques capture all bracketings at the same time, it is straightforward that [(f ® ') ® f] =
[f ® (f' @ f")], and thus the tensor product is strictly associative. One similarly check that it is
strictly unital.

Finally, the embedding (and not quotient!®) +: K < K is given by # + () on objects,
with (x) a length-one tuple, and by f — [f] on morphisms. This embedding is monoidal, with
the isomorphism ¢(x ®x y) = () ystr L(y) induced by the identity on x ®x y. This also shows
that ¢ is essentially surjective. Finally, uniqueness of the clique represented by f shows that this

is fully faithful. O

Remark. One streamlined proof of (iii) is analogous to Cayley’s theorem, embedding the weak
monoidal category in a strict monoidal category of endofunctors (this can also be interpreted as a
2-dimensional Yoneda embedding); this approach was first given in [7], and it is the one presented
in [2, 5]. Another proof can be found in [8, p. XL.5].

§2 Braided monoidal categories and the failure of strictification

Definition (nLab). A braided monoidal category is a monoidal category (K, @i, Ixc) together with
a natural isomorphism

5r,y:x®y_>y®xa

satisfying some further naturality conditions. This isomorphism is called the braiding.

A braided monoidal functor is a monoidal functor between braided monoidal categories, satis-
fying some compatibility condition with respect to the braiding.

In the literature, one will find that Mac Lane’s strictification theorem extends to the braided
setting:

Theorem (Mac Lane’s strictification theorem for braided monoidal categories). Every braided
monoidal category is braided monoidally equivalent to a strict one.

However, the terminology is misleading, as a strict braided monoidal category is just a braided
monoidal category whose underlying monoidal category is strict. In other words, in a strict braided
monoidal category, the braiding may not be strict! Hence, this theorem should rather be under-
stood as a semi-strictification theorem. If one forces the braiding to be strict, it forces the equality
T ® 1y = y ® x; in that case, one speaks of a commutative monoidal category.’

Why doesn’t strictification hold in the braided setting? Because coherence doesn’t hold. For
instance, one does not expect 3, ,: ¢ ® * — = ® x to be trivial! However, one can still find a
(restricted) coherence theorem for braided monoidal categories:®

Theorem. In a braided monoidal category, formal diagrams made up of {a~*, \=%, p~1, B=1} com-
mute if they represent element in the braid group.

8See this discussion.
"This terminology appears in this paper; see also this MO question.
8See for instance [6].


https://ncatlab.org/nlab/show/braided+monoidal+category
https://ncatlab.org/nlab/show/coherence+theorem+for+monoidal+categories#discussion
https://arxiv.org/pdf/1808.05415.pdf
https://mathoverflow.net/questions/335931/symmetric-monoidal-category-with-trivial-switch-morphisms

Remark. A braided monoidal category is called symmetric if the braiding further satisfies the
condition that 3, , o 8;, = idygy. There are similar results in this setting, namely that ev-
ery symmetric monoidal category is braided monoidally equivalent to strict symmetric monoidal
category (where “strict” again only means that the underlying monoidal category is strict), and
formal diagrams made up of {a™!, A*!,
in the symmetric group.

ptl, BT commute if they represent the same element

§3 Strictifying 3-categories with Gray categories

As mentioned in the introduction, Gray categories are semi-strict replacement for 3-categories. In
some sense, they are “the furthest one can strictify” while preserving equivalence with generic 3-
categories.” The relationship between these three notions (3-categories, Gray categories and strict
3-categories) is expressed in the schematic below:

full expressivity
° @ ------------ )
3-categories Gray categories strict 3-categories
one-object and one-morphism
full expressivity
® @ -------o---- °
braided strict braided commutative
monoidal monoidal monoidal
categories categories categories

In fact, if one unwraps the definitions in the one-object and one-morphism case, one precisely
recovers the analogous situation for braided monoidal category!

We start by recalling strict 2-categories. In a nutshell, a strict 2-category has an underly-
ing category and additional morphisms between morphisms, called 2-moprhisms (we also rename
morphisms as 1-morphisms). The latter can be depicted using globular diagrams:

2-morphisms can be composed in two distinct ways: either vertically, gluing along 1-morphisms
(denoted with %), or horizontally, gluing along objects (denoted with x¢, formerly the composition
o in the underlying category):

/

h g g g'og
ﬂﬁ \/\ N v N A N
B4 = Hﬁ*laA c ﬂﬁ B fa A =cC ”ﬂ*oaA.
fla v o N I
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°Gray categories are not the only direction to strictify a 3-categories. For instance, one can strictify the interchange
law but leave units weak. See e.g. the nLab.


https://ncatlab.org/nlab/show/semi-strict+infinity-category

Since the 2-category is strict, both compositions are associative and unital. However, we have an
extra naturality condition, which captures the compatibility between the two compositions. It is
called the interchange law:

(f *0 h) *1 (g *0 k) = (f *1 g) x0 (h*1 k).

In other words, the interchange law ensures that “it doesn’t matter whether we first compose
vertically and then horizontally, or vice-versa”.
It follows from the interchange law that

(f %0 id) %1 (id %0 g) = f %0 g = (id o g) *1 (f %o id).

In other words, we could also define horizontal composition of non-trivial 2-morphisms as either
side of this equality, and only require horizontal composition with identities to be defined. We
then only record the equality

(f *0 id) *1 (id *0 g) = (id *0 g) *1 (f *0 id).

The above is often also referred as the interchange law. This provides an equivalent definition of
a strict 2-category, which will be useful in our definition of Gray categories.

If the strict 2-category only has one object, then “horizontally composing along objects” is an
empty condition, and the horizontal composition is just a tensor product. Hence we can write
as ® and % as o, and the interchange law as

(f®id)o(ld®g) = (ld® g) o (f ®id).

The above encodes the naturality of the tensor product. This shows that a one-object strict 2-
category is precisely a strict monoidal category, with 1-morphisms corresponding to objects and
2-morphisms to morphisms. If this monoidal category further has a single object, then by the
Eckmann-Hitlon argument we get a commutative monoid.

A strict 3-category similarly has an underlying 2-category and additional morphisms between
the 2-morphisms, called 3-morphisms. They can be composed in three different ways, gluing along
objects (denoted xq), along 1-morphisms (denoted %) or along 2-morphisms (denoted x2). Each
composition is strictly associative and unital. Similarly to the fact that a one-object one-morphism
strict 2-category is a commutative monoid, a one-object one-morphism strict 3-category is a com-
mutative monoidal category.

In contrast, a Gray category also has associative and unital compositions, but the interchange
law only holds up to isomorphism. This isomorphism is witnessed by a 3-morphism called the
interchangor:

Vig: (f®id)o(ild®g) = (i[d®g)o (f ®@id),

satisfying some coherent conditions.
A one-object one-morphism Gray category is precisely a strict braided category, with the fol-
lowing correspondences:

one-object one-morphism strict braided monoidal
Gray categories categories
2-morphisms — objects
3-morphisms ~ morphisms
interchangor — braiding
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